Journal of

Mathematical
Blology

@© Springer-Verlug 1998

J. Math. Biol. (1998) 37: 103-145

On the effects of spatial heterogeneity on
the persistence of interacting species

Robert Stephen Cantrell*, Chris Cosner*

Department of Mathematics and Computer Science, The University of Miami,
Coral Gables, FL 33124, USA
E-mail: Cantrell: rsc@atlanta.cs.miami.edu; Cosner: gec@paris.cs.miami.edu

Received: 9 June 1997

Abstract. The dynamics of two interacting theoretical populations inhabiting
a heterogeneous environment are modelled by a system of two weakly coupled
reaction—diffusion equations having spatially dependent reaction terms.
Longterm persistence of both populations is guaranteed by an invasibility
condition, which is itself expressed via the signs of certain eigenvalues of
related linear elliptic operators with spatially dependent lowest order coeffi-
cients. The effects of change in these coefficients upon the eigenvalues are here
exploited to study the effects of spatial heterogeneity on the persistence of
interacting species through two particular ecological topics of interest. The
first concerns when the location of favorable hunting grounds within the
overall environment does or does not affect the success of a predator in
predator—prey models, while the second concerns cases of competition models
in which the outcome of competition in a spatially varying environment differs
from that which would be expected in a spatially homogeneous environment.
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1 Introduction

In this article we are interested in the effects that a spatially heterogeneous
environment may have on the persistence of the species which inhabit it. To
study this problem, we focus on the interaction of two species and seek to
determine whether the interaction results in their longterm coexistence. Our
mathematical framework is given by diffusion models whose coefficients vary
spatially in order to capture spatial heterogeneity. In this context there is an
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interacting species in all cases where both species are present initially. In those
models that describe two competitors we could use either uniform persistence
or compressivity as our criterion for coexistence since the conditions leading to
those two sorts of coexistence are identical. This point is observed in [97]. To be
slightly more precise, we should note that all the models we consider have the
property that all nonnegative initial data evolve eventually into a fixed bounded
region and remain there thereafter (i.e. the models are point dissipative). The
term permanence is used to describe systems that are both uniformly persistent
and point dissipative, so in practice our definition of coexistence is actually
based on permanence rather than uniform persistence. For those competition
models where we could use compressivity to define coexistence we will also have
dissipativity and the conditions leading to permanence and to compressivity
will be identical, so we shall generally use the term permanence to describe our
notion of coexistence. A general account of the theory of permanence is given in
[22]. Some applications to reaction—diffusion systems are discussed in [10-12].
Compressivity in reaction—diffusion models for two competitors is discussed in
[217. The relative merits and ranges of applicability of permanence, compressiv-
ity, and other formulations of longterm coexistence are discussed in [15].

In [11] we demonstrated that permanence for diffusion models can be
characterized in terms of the instabilities of states where only one population
is present. The same was done for compressivity in competition models in
[21]. Roughly speaking, the biological interpretation of these instabilities is
that one population can invade the environment when the other population is
already established there. Put another way, the results of [10-12, 21] provide
mathematical rigor to the idea that invasibility implies coexistence. The study
of the stability or instability of a state (in this case an ordered pair of
population density profiles) leads to the examination of linear eigenvalue
problems (in this case, for linear elliptic differential operators). As a conse-
quence, the results of [10-12, 21] guarantee permanence (i.e. longterm coexist-
ence) when the eigenvalues of certain linear elliptic differential operators are
positive. In this article, we explore how the signs of these eigenvalues may
change as the coefficients in the original models vary spatially in order to
examine the effects on the persistence of interacting species. In particular, we
consider two biological situations. First, we examine cases of competition
models in which the outcome of the competition in a spatially varying
environment differs from that which would be expected in a spatially homo-
geneous environment. Second, we address the question of when the location of
favorable hunting grounds within the overall environment does or does not
affect the success of the predator in predator—prey models. We give analytic
justification and explanation for some such phenomena that have been ob-
served in the numerical simulations of [32].

The models we employ are reaction—diffusion systems of the form

du; .
S widu; + fi(x, ug, ux)u; in Qx(0, o)

ot (1.1)
Bu; =0 on Q2 x(0, o),
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immediate question which arises. Namely, what should be meant by the
longterm coexistence of two interacting species and what mathematical tech-
niques can be employed to guarantee it? The conventional wisdom is that
“invasibility implies coexistence”. What that means is that if each species can
increase its population if introduced at a low density into an environment
where the other species is already present at its carrying capacity (or an
analogous equilibrium or steady state in heterogeneous situations) then the
two species can coexist. We shall describe some mathematical formulations of
what is meant by coexistence and invasibility so that the idea that invasibility
implies coexistence can be rigorously justified. We shall then examine how
certain types of spatial heterogeneity affect invasibility and hence coexistence.
There are a number of reasons why a careful consideration of what is meant
by coexistence is necessary. Diffusion models are nontrivial to analyze. The
states in these models represent the population densities of the species in
question and the asymptotic behavior of the states frequently is more complic-
ated thart just convergence to equilibrium densities. Hence, while converging
to a componentwise positive equilibrium is a clear indicator of longterm
coexistence, it by no means exhausts the possible forms of coexistence and
therefore is not suitable as the definition of longterm coexistence. Instead, we
take longterm coexistence to mean the existence of fixed positive population
density profiles v, and v, so that any initial population density profiles which
are nontrivial in both components will at some point in time (and then for all
future time) exceed v; and v, throughout the habitat in question. (The time
required to exceed v; and v, of course will depend on the initial state.)
There are two abstract formulations which lead to coexistence according
to the above definition for the models we consider. The first approach is based
on interpreting the model in a setting that permits the use of order methods,
typically an ordered Banach space. If the model has appropriate monotone
and order preserving properties (as in the case of models for two competitors
or arbitrarily many mutualists) it may turn out to be compressive in the sense
of Hess [21]; i.e. it may have a globally attracting order interval to which
certain solutions converge monotonically and thus trap all other positive
solutions via the order preserving properties of the system. (This sort of idea
and related methods based on sub- and supersolutions and comparison or
maximum principles have been in use for some time; see for example [16, 24]
and the references therein.) In situations where the system does not have good
monotone properties (as in the case of predator—prey systems) an alternative
approach is to use dynamical systems ideas to show the existence of a positive
attractor which is uniformly bounded away from zero in all components. This
second notion of longterm coexistence is called uniform persistence and is
usually considered in terms of convergence to the attractor with respect
a metric in contrast to the convergence with respect to an ordering used to
define compressivity. In all of our examples we can choose our spaces, metrics,
and orderings so that either compressivity or uniform persistence implies
the existence of density profiles v, and v, for the two components in the
model which are asymptotic lower bounds for the density profiles of the two
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interacting species in all cases where both species are present initially. In those
models that describe two competitors we could use either uniform persistence
or compressivity as our criterion for coexistence since the conditions leading to
those two sorts of coexistence are identical. This point is observed in [97]. To be
slightly more precise, we should note that all the models we consider have the
property that all nonnegative initial data evolve eventually into a fixed bounded
region and remain there thereafter (i.e. the models are point dissipative). The
term permanence is used to describe systems that are both uniformly persistent
and point dissipative, so in practice our definition of coexistence is actually
based on permanence rather than uniform persistence. For those competition
models where we could use compressivity to define coexistence we will also have
dissipativity and the conditions leading to permanence and to compressivity
will be identical, so we shall generally use the term permanence to describe our
notion of coexistence. A general account of the theory of permanence is given in
[22]. Some applications to reaction—diffusion systems are discussed in [10-12].
Compressivity in reaction—diffusion models for two competitors is discussed in
[21]. The relative merits and ranges of applicability of permanence, compressiv-
ity, and other formulations of longterm coexistence are discussed in [15].

In [11] we demonstrated that permanence for diffusion models can be
characterized in terms of the instabilities of states where only one population
is present. The same was done for compressivity in competition models in
[21]. Roughly speaking, the biological interpretation of these instabilities is
that one population can invade the environment when the other population is
already established there. Put another way, the results of [10-12, 21] provide
mathematical rigor to the idea that invasibility implies coexistence. The study
of the stability or instability of a state (in this case an ordered pair of
population density profiles) leads to the examination of linear eigenvalue
problems (in this case, for linear elliptic differential operators). As a conse-
quence, the results of [10-12, 21] guarantee permanence (i.e. longterm coexist-
ence) when the eigenvalues of certain linear elliptic differential operators are
positive. In this article, we explore how the signs of these eigenvalues may
change as the coefficients in the original models vary spatially in order to
examine the effects on the persistence of interacting species. In particular, we
consider two biological situations. First, we examine cases of competition
models in which the outcome of the competition in a spatially varying
environment differs from that which would be expected in a spatially homo-
geneous environment. Second, we address the question of when the location of
favorable hunting grounds within the overall environment does or does not
affect the success of the predator in predator—prey models. We give analytic
justification and explanation for some such phenomena that have been ob-
served in the numerical simulations of [32].

The models we employ are reaction-diffusion systems of the form

B e+ iy i @X(0, )

Bu; =0 on 0Qx(0, o),

(1.1)
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i=1,2, where u; and u, denote the densities of the species inhabiting the
connected region Q. The boundary of @, 42, may be lethal to a species
(Bu.z u) or may act as a barrier (Bu = du/dn, where 8/0y is an outer normal
derivative). In the case where the boundary is lethal and the functions fido not
depend on x, such models are sometimes called KISS models after Kierstead
and Slobodkin [23] and Skellam [35]. KISS models have been used fairly
e?(tensively to study area effects, but since we want to study spatial heterogen-
eity and allow boundaries which act as barriers we must use the more general
formulation (1.1).

' The results and methods of [10-12,21] allow either the boundary condi-
'tlon u; = 0 or du,;/6n = 0 on each component in (1.1). The spatial heterogeneity
in the model as well as the intra- and interspecies interactions are expressed
through the local per capita growth laws f;(x, u;, u,) for each species. The
constraints we place on the f;’s are modest and biologically reasonable, and
they fall into two general categories. The first group of constraints serve to
guarantee that (1.1) is point dissipative. These are discussed in detail in Sect. 4
of [11]. We shall not discuss them further here, beyond noting that all the
exampl@s we consider in this article are point dissipative. The second group of
constraints serve to restrict the dynamics of one population in the absence of
the other. In particular, they guarantee that if i # j, u; tends to an equilibrium
i; (possibly zero) when u; = 0. We discuss this group of constraints in more
detail in Sect. 2, where we outline our procedure for determining permanence,
or compressivity in the competitive case. The analysis leads up to the eigen-
value problems

mdw; + fi(x, 0, i)w; = oyw; in Q
(1.2)
Bw;, =0 on 0%

and

adws + fo(x, @1, 0)w, = o,w in Q
(1.3)
B,w, =0 on 4Q

T.he result is that (1.1) is permanent provided that the unique principal
eigenvalues ¢, and g, for which (1.2) and (1.3) admit positive solutions are
bOtl'l .positive. The positivity of o, and ¢, implies the local instability of the
egmhbria (1, 0) and (0, it;). This can be interpreted as an invasibility condi-
tion. The reader should note that if for instance ¢, < 0, the extinction state
(0,1,) is in a sense stable, so that coexistence cannot be expected.

L*:l Sect. 3, we explore how the outcome of competition in heterogeneous
environments may differ from that in homogeneous environments. This issue
1s one we have addressed before in the context of refuge design ([97]). Our
results here are of a different flavor. In particular, we use results derived in
[10] to examine cases in which the diffusion rates U; are either very large or
very srr;all. We demonstrate that the competitors may coexist even when
competition is very strong throughout € (which would not be possible on
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a homogeneous environment), provided that the populations segregate spa-
tially, with the mechanism for segregation being spatial variation in growth
rates and carrying capacities, rather than the geometry of Q per se. Likewise,
we observe that coexistence is possible with no such spatial segregation,
provided strong competition is restricted to small spatial regions. Finally, we
examine situations treated by Pacala and Roughgarden [32]. We elaborate on
their numerical observations that invasion in competition models is possible
globally when it would fail in a2 homogeneous environment corresponding to
any local region of the global environment and that, conversely, invasion may
fail globally when it would be possible in a homogenous environment corres-
ponding to any local region of the global environment. We show that the
underlying reason for these phenomena lies in the way that such mathematical
models average environmental quality, different averages being appropriate in
different contexts.

In Sect. 4, we consider a predator—prey interaction where the predator’s
functional response to the prey has the spatially varying form e(x) f(u,), with
e(x)=0 on Q, f(0)=0, f(uy) >0 for u; >0 and f(u;) nondecreasing in
u, foru, = 0. The term e(x) indicates the efficiency of the predation at location
x. A large value of e(x) indicates that x is a favorable locale for predation,
a smaller value of e(x) indicates a less favorable locale, and e(x) = 0 indicates
that the prey is inaccessible to the predator at x. Our interest in this problem is
in how the size and spatial arrangement of favorable hunting grounds affects
the model’s predictions on the longterm viability of the predator. We establish
that if there is a sufficient amount of habitat where the predator is highly
efficient or where the predator is rather inefficient, then the location and
configuration (so long as it remains contiguous) of this habitat within Q does
not affect the model’s prediction on the success of the predator. The predator
persists in the first case and goes extinct in the second. Moreover, we also
demonstrate that for a hunting ground of intermediate size and favorability
for predation, location and spatial arrangement with  of the hunting ground
become crucial factors in determining whether the model predicts persistence
or extinction for the predator. In our results we derive quantitative criteria for
the survival or extinction of the predator. These criteria can be explored
further on the basis of our previous work ([4-6]) on eigenvalue problems with
indefinite weights. The situations we consider have some relation to those
examined in studies of the effects of prey refuges on predator—prey interac-
tions, e.g. [30,34], but we address different questions. In particular we do
not attempt to analyze the effects of heterogeneity on the size or stability
of a coexistence equilibrium but only on the prediction of coexistence or
extinction.

In Sect. 5 we describe the biological conclusions of our work in a relatively
nonmathematical way, give a brief discussion of how our work is (or is not)
related to other theoretical studies, and try to suggest some possible ways in
which our theoretical results could be connected with empirical studies.

The mathematical results of Sect. 2 are all proved in one or more of our
references or follow directly from the results or methods discussed in those
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. references. Essentially all of the new mathematical results are stated in Sects. 3
and 4 and proved in the Appendix. All the results whose proofs are given in
the Appendix are to our knowledge new.

2. Mathematical background

The models we consider all have the form
Uy = wdu; + fi(X, uq, up)y;  in Q x (0, o0)
Bu; =0 on 92 x (0, o) 2.1
w(x,0) = ul(x) =0 in Q

for i=1,2, where u; denotes the population density of the ith interacting
species, @ € R" (usually n=1,2 or 3) is the habitat in question, and
the homogeneous boundary condition, B; represents either a barrier
(Bju; = du;/dv, the outer normal derivative) or a completely hostile exterior (i.e.
Bu; = u;). Here u;, denotes 0u;/0t and as usual 4 = 8%/0x? + - -+ + 9%/0x? is
the Laplace operator, y; >0 is the diffusion rate for the ith species, and
Ji{x,uy,u5) is the local per capita growth law for the ith species (accounting for
possible spatial heterogeneity in the habitat and for the effects of interspecies
interactions). We shall assume 99 is smooth.

If the functions f; are jointly C? in x,u,, and u, then the system (2.1)
generates a semiflow in C(Q)?% see [10-12,22]. Even if the functions are
merely Lipschitz in u; and u, and piecewise continuous in x then the system
generates semiflows on function spaces generated by fractional powers of the
Laplace operator acting on an appropriate domain in L?(Q)2 A competition
model with coefficients that are only piecewise continuous is treated in [9].

The notions of permanence and (in the competitive case) compressivity
require a definition of positivity. In the case of Neumann boundary conditions
we can work in C(22)? and define (4,v) > 0 to mean simply thatu > 0,» > 0 on
Q. In the Dirichlet case we can never have solutions of (2.1) which are positive
on Q2 because of the boundary condition. However, we still want to arrange for
a positive cone with nonempty interior. To do that we define (u,v) > 0if u > 0,
v > 0in Q and du/dn < 0, dv/dn < 0 on Q. The positive cone corresonding to
this definition will have nonempty interior in C*(€)?, so in the Dirichlet case
we will work in C*(Q)?. (To use monotonicity and establish compressivity in
the competitive case we would also need to use the ordering (u;,u;) > (vy,,)
ifu; > v; and u, < v,; however, we would still work in C(2)? in the Neumann
case and C'(Q)? in the Dirichlet case, and the componentwise definitions of
positivity would still be as above.)

A system is said to permanent if it is point dissipative, preserves the
positive cone and its boundary, and has a positive set A lying some distance
& >0 away from the boundary of the positive cone such that 4 is globally
attracting for solutions with positive initial data. In the Dirichlet case the
conclusion is that there are functions v, (x), v,(x) with v; > 0 on @, dv;/dn < 0
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on 0Q for i = 1,2 such that every positive solution eventually satisfies u; = v;
on Q and Ou;/dn < 0v;/on on 0Q for i =1,2. In the competitive case the
alternative approach of compressivity uses monotonicity and asserts the
existence of a positive globally attracting order interval, but the implications
about asymptotic lower bounds for u; and u, are indentical to those of
permanence and are valid under precisely the same hypotheses.

We now outline of the precedure established in [11] for a determination
of permanence for (2.1). We then follow with a discussion of the biological
interpretation of the result and the underlying prerequisities on the diffusion
rates y; > 0 and the local per capita growth laws fi(x, u;, u,). Further dis-
cussion of these prerequisites may be found in [4] and [107. In the competitive
case the same procedure and prerequisites establish compressivity as in
[15,21].

2.1 The procedure for establishing coexistence

In all cases we shall need some sort of upper bounds on the solutions of (2.1) as
t - oo, and for all of the models we consider such bounds are available.
Specifically, all of our systems will be point dissipative, that is, they will have
the property that any initial data will eventually be drawn into a fixed
bounded set. Establishing dissipativity may be difficult, but once it is estab-
lished conditions for coexistence may be obtained via three steps.

Step 1. We require p; > 0 with the property that
Uy, = pyduy + f10c,uy, Quy;  in Q% (0, c0)
Biu; =0 on 0Q x(0, c0) (2.2)
u (x,0) =ud(x) =0 in Q

admits a globally attracting equilibrium solution which is positive on Q.
Denote this solution by i, (x).

Step 2. We consider the companion problem
Uy = aduy + fo(x, 0, uz)u; in Q% (0, o)
Byu; =0 on 0Q x (0, o) (2.3)
u(x, 0) = u(x) = 0 in Q.
There are two alternatives:

(a) There is a p, > 0 so that (2.3) admits a globally attracting equilibrium
solution which is positive on €. In this case, for such a p,, denote the
solution by i, (x).

(b) There is no such u,. In this case, we let pu, > 0 be arbitrary and take

l5(x) = 0.
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Step 3. Given y, and #, from Step 1 and p, and i, from Step 2, we assume
f1(x,0,0) = f1(x, 0, %i,(x)) for all x in Q. We then formulate the eigenvalue
problems

mdwy + f1(x, 0, d,(x))w; = 6;w; in Q

2.4
Biw; =0 on 9Q

and

Hadwy + fo(x, i, (x), 0)wy = 6w, in £

(2.5)
Byw, =0 on 0Q2 .

The theory of partial differential equations guarantees the existence of unique
real numbers ¢; and o, so that (2.4) and (2.5) admit solutions w; and w,,
respectively, with w; >0 on Q. The main result of [11] is that (2.1) is
permanent provided ¢; > 0 and ¢, > 0. In the special case of competition
systems the condition ¢; >0 and ¢, > 0 also implies compressivity; see

[15,21]°

2.2 Biological interpretation of Steps 1-3

The point of Step 1 is that in our models the species represented by u,; will be
either the prey in a predator—prey system or one of the competitors in
a competition system. For coexistence to be possible it is necessary that the
first species can persist by itself in the absence of the damaging effects of the
other species. The formulation of persistence in terms of the existence of
a globally attracting positive equilibrium #; is rather strong, but it will be
satisfied in many models provided the growth rate f; (x, u,, 0) is decreasing
with respect to u; and is sufficiently large over a large enough region of
Qwhenu; = 0,e.g.iff;(x, u;, 0) = r(1 — u;/K) with r large. In some situations
the additional restriction that y; is sufficiently small may be required. This
will be the case when the boundary of Q is lethal so that u; =0 on the
boundary.

In Step 2 we must distinguish between cases a) and b). In case a) the
condition on the species described by u, is the same as that on uj, ie. it is
assumed that u, tends toward a stable positive equilibrium density if u, = 0
and u, > 0 initially. This is the only case which can lead to coexistence if
uy and u, are competitors. If u, represents a predator which preys upon u, the
case a) corresponds to a situation where u, has sources of food other than
u; and satisfies something like a logistic equation when u; is absent. Case b)
reflects a situation where the predator starves in the absence of the prey.

The condition ¢, > 0 in Step 3 is an instability criterion at the equilibrium
(0, 5(x)) of (2.1). It guarantees that if for a solution (u,(x, 1), u,(x, t)) of (2.1)
there is to > 0 so that (u;(x, to), u5(x, o)) is a close enough approximation to
(0, @2(x)), then du,/0t(x, t) > O for t in some time interval (to, to + 6). Conse-
quently introducing the species with density u, into the system (2.1) at a low
density when u,(x, -) is near i1,(x) on Q prompts u,(x, t) to increase with ¢.
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Likewise introducing u, at a low density into the system when u; is close to
the equilibrium density it approaches in the absence of u, prompts growth of
u, as a function of time. Such a system is sometimes called invasible in the
literature. Consequently, the main result of [117] can be cast as claiming that
“invasibility implies permanence”.

2.3 Mathematical requirements and justifications

All of the mathematical results in this section follow directly from results and
methods already in the literature. OQur first result synthesizes a number of
theorems from [11] about permanence:

Theorem 2.1. Suppose that the functions f; in (2.1) are smooth and that (2.1) is
dissipative in the sense that there exist constants U, U, such that for any
nonnegative initial data u, u3 there exists a finite time T (which may depend
on ud,ul) such that the solution of (2.1) satisfies 0 <uy(x,t) U, and
0 Zuy(x, 1) S U, fort > T. Suppose that the equilibria iy, i, have the proper-
ties described in Steps 1 and 2 (in case (b) of Step 2 we have i, = 0). Suppose
finally that the principal eigenvalues a1 and o, in (2.4) and (2.5) respectively are
both positive. Under these hypotheses the system (2.1) is permanent in [C*(Q)]>.
It follows (by the appropriate definition of possitivity in [C*(Q)]? and the strong
maximum principle) that there exist density profiles vi(x) and v,(x) which are
positive in Q such that solutions to (2.1) with each of the initial densities u3, u3
nonnegative on Q and strictly positive on some open subsets of Q have the
property that uy(x, t) = vy(x) and u,(x, t) = v4(x) on Q for t sufficiently large.

Remark. The smoothness conditions on f; can be reduced somewhat by
working in Sobolev spaces or in interpolation spaces constructed via frac-
tional powers of the Laplace operator; see for example [20].

In the competitive case it is possible to replace permanence with compres-
sivity, i.e. the existence of an attracting order interval, by using the methods
developed in [21] and described in [15]. (The basic ideas go back much
further; see [16,24].) A consequence of those methods and results is:

Theorem 2.2. Suppose that the hypotheses of Theorem 2.1 are satisfied with
case a) holding in Step 2 and suppose further that the system is competitive, i.e.
of;/ou; < 0 for i = j when uy, u; = 0. Then the system is compressive, i.e. it has
an attracting order interval, and there are solutions starting arbitrarily close to
(11, 0) and (0, 0i,) which converge monotonically to the equilibria bounding the
order interval. (T he ordering is the usual one for two species competition models,

ie. (p1,p2) £ (91,92) if py £ qy and py Z q5)

Remark. Because the permanence results of [11] are refined by combining
them with order arguments, the abstract conclusion of compressivity is
stronger than that of permanence in the present context but only to the extent
that there are solutions which converge monotonically to the attracting set
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and which (by the order preserving properties of the system) bound the
dynamics of other solutions. In specific cases it is sometimes possible to obtain
estimates on the location of the attracting order interval via sub- and super-
solutions, and if there is a unique coexistence equilibrium then order methods
can be used to show stability. These ideas were introduced in [24] for
Lotka-Volterra models and are further developed in [15, 16,217, and some of
the references in those articles. Related results are used to study two species
subsystems of three species models in [12]. Note that the conditions for
permanence and for compressivity in terms of invasibility are identical. There

is, however another sort of result which can be obtained by using order
methods:

Lemma 2.3. Suppose that (2.1) is competitive and that case a) holds in Step 2.
Suppose that the principal eigenvalue o, in (2.4) satisfies 0, > 0 and that (2.1)
does not admit an equilibrium (u¥, u¥) withu* > 0 on Q fori=1,2. Inthat case
uy excludes uy, ie.u; —»it; andu, »0ast — o (If 6, > 0in (2.5) and there is
no positive equilibrium for (2.1) then u, excludes u,.)

Remark. This result follows from the proof of Lemma 3.3 of [12].

We now describe conditions under which the hypotheses of Theorems 2.1
and 2.2 are satisfied. Results of [11] imply:

Lemma 2.4. The system (2.1) is dissipative in the sense required in Theorem 2.1
provided fi(x, uy, u,) is decreasing in u, Jor uy, u, =0, there exists a constant
K >0 such that fy(x, u;,0) < 0 for all x€ Q@ if u, > K, and that either there is
a constant L > 0 such that f5(x, uy, u;) < 0 for 0 < uy <K+ 1landu,> L, or
there exist constants «,f,y with «, B>0 such that of(x,uy, us)u; +
Jalx, ug, up)u, <y — Blow, + uy) Jor 0Su; SK+1 and u, 20, (Stronger
Jorms of dissipativity then follow via parabolic regularity.)

To achieve Steps 1 and 2 we use results on single reaction-diffusion
equations and related linear eigenvalue problems which are derived or dis-
cussed in [2-6, 14, 21, 29, 33].

Lemma 2.5. Suppose that f;(x,0,0) > 0 on an open subset of Q. The linear
eigenvalue problem

— Az =2Af;(x,0,0)z in Q
Biz=0 on 0Q

has a nonnegative principal eigenvalue A1(fi(x, 0, 0)) which is characterized by

the existence of an eigenfunction z >0 in Q. In the case that Byz=12z or
fafi(x,0,0)dx <0, we have A(f1(x,0,0)) > 0. If [ofi(x,0,0)dx <0 and
B,z = 0z/0v then A,( f,(x,0,0)) = 0.

(2.6)

Discussion. Versions of this result are obtained in [3,21, 29, 33]; for a survey
of related results see [14].

The existence and uniqueness of the equilibrium i, in Step 1 follows from
results of [4, 21, 33]:
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Lemma 2.6. Suppose that

(i) the intrinsic rate of growth at low densities f; (x, 0, 0) is positive on an open

subset of Q; for all xe
i) fi(x, uy, 0) decreases in u, for all x € ; .
(Eii) t;lere is a value K > 0 so that fi(x, uy,0) £ 0 for all x € Q provided that

Uy ~.>__ K.
Additionally, if A(f1(x,0,0)) > 0 in (2.6) we restrict the diffusion rate p, by

requiring .

L e |
S ATACT)
Under these hypotheses (2.2) has a unique positive equilibr.ium 121. which l:S
globally attracting among nontrivial nonnegative solutions. If inequality (2.7) is
replaced by

2.7)

= (2.8)
M =21, 0,0))
then (2.2) has no positive equilibrium and all nonnegative solutions approach
zero as t— oo,

Remark. Inequality (2.8) holds if and only if the principal eigenvalue g, for

[,llAlp +f1(x, 0, O)lp = Uol// in Q
By =0 on 0

éatisﬁes 6o < 0. This is noted in [5,33]. (In fact if 65 <0 then all positive
solutions of (2.2) approach zero as t — oo, even when f;(x,0,0) = 0 on Q.)

The analysis for Step 2 is similar to that for Step 1. In Step 2, alternatl\(l)e
(a), we place conditions on f5(x, 0, u;) and yz‘agalogous to those on fi (x, u;, 2
and p, in Step 1. Alternative (b) in Step 2 is included so that we may t§e§
predation in cases when the local per capita grovf/t.h lav-v. .for the predator fails
to exhibit self regulation (as postulated in condition (iii) for f5(x, 0, uz))3 for
example, f5(x, 4y, uz) = — d(x) + a(x)u/(u; + B(x)), where d, o, § are positive
functions on Q. In such cases, we require that f5(x, 0, uz.).g 0 forallu, = 0and
all x € Q, so that iI, = 0 is the globally attracting equilibrium fo:r (2.3) for all
U, > 0. To these initial restrictions we add.m Step 3 the r.equlrement thgt
f1(x, 0,0) = fi(x, 0, i1x(x)), so that the u, species has a deleterious effect on the
- SXEC;;Z‘ prerequisites we have noted concern situations in which one or the
other of u; and u, is identically zero. Consequently, our resu1t§ say that
“invasibility implies permanence” under a bro?.d range of assumptions abqut
the interactions f;(x, uy, u,). Moreover, since m.vas1‘b111ty depends on the in-
stability of states where only one of the species is presen‘t.relanve to the
introduction of the other species, it is natural that our conditions for perma-
nence occur in terms of eigenvalues for linear eﬂipt{c operators. T.he use of
eigenvalues allows us to treat situations with spatial heterogeneity in the
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models themselves or with complicated geometry in a unified way. It also
permits us to treat a range of different boundary conditions. Thus we can
analyze systems far more complicated than those derived from standard KISS
models. (Recall that KISS models are the special cases of (2.1) where there is
no explicit spatial dependence, i.e. f; and f, depend only on u;, u,, and where
Byu = Byu = u.) All of our new applied results in this paper are based on
making estimates that relate how ¢, and g, in Step 3 (equations (2.4) and (2.5))
depend on f3, f5, iy, #a, {11, 12, By, B, and/or Q.

3 Competition and spatial heterogeneity

In this section we examine the implications of the results of [10] for a competi-
tion model with spatial heterogeneity. We base the model on a Lotka—
Volterra system describing the dynamics of the populations U, and U, of two
competitors in a favorable homogeneous environment:

4U; Ui ayU;
—=n{l-——==)U 3.
o = (1 A A >U,, (3.1)

fori,j=1,2, j+i.In(3.1),ris the intrinsic growth rate of the ith population
at low densities, k; is the carrying capacity of the ith population, and o5 de-
scribes the impact of competition from the jth population on the ith popula-
tion. The coefficient a;; can be broken down into a term arising from direct
competition for resources and another term arising from interference competi-
tion. The coefficients r; and k; and the part of oy; arising from resource
competition can be derived from a consumer/resource model under suitable
scaling assumptions; see [28,36]. The part of oy; arising from interference
competition can be derived from the average costs and benefits of acts of
interspecific interference; see [137]. We shall use a different notation because in
our spatially heterogeneous models, we will want to consider situations where
r; is negative on parts of the environment. If r; < 0 then the term (—rik)
multiplying U ? on the right side of (3.1) becomes a growth term rather than
a logistic self-limitation term, and could lead to a prediction of unbounded
population growth for a sufficiently large initial populations. That is not
reasonable, since changing the intrinsic growth rate into a death rate should
not cause unbounded growth, even for a large initial population. Thus, for our
models with diffusion we take u;, u, to be population densities on a bounded
region Q and write our system as in [107]:

(7u,~
5{ == ,uiAui + ['ni(x) . b,-,-(x)u,- - b,—_,-(x)u_,-]ui

in Qx(0, o), j i, j=1,2. (3.2)

We assume that by; is bounded below by a positive constant and that for jEi
b;; is nonnegative. In regions where the intrinsic growth rate is positive
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we have the interpretation r; = my, k; = m;/by, o; = b;j/by; in terms of the
coefficients of (3.1).

3.1 Technical preliminaries

In the context of the model (3.2) the condition for permanence is that o; > 0 in

wdr; + (my(x) — by(X)i;); = oh; in Q

(33)
Bﬂ//i =0 on 082

for i=1,2, j+1i, where @; is the equilibrium for (3.2) when u; = 0. The
remainder of this section will be devoted to studying the connection betw;en
permanence and the coefficients of (3.2) to gain insight into the bio%ogmal
circumstances in which coexistence is expected. An important tool in our
analysis is the following result which is proved in [10]:

Lemma 3.1. In (3.3), 0, >0 if
Q
We shall proceed by examining how #; behaves as p; — 0 or y; — co and then

using Lemma 3.1 and other results to draw conclusions about coexistence or
exclusion. Recall that Lemmas 2.5 and 2.6 imply that the problem

%L—l = pdu + m(x)u — b(x)u*> in Qx (0,00,
' (3.5)
Bu=0 on 82 x (0, o0

(where Bu = u or Bu = 0u/0n and b(x) Z 0) will have a p'ositive eq}lﬂibrium
# which is globally attracting among nonnegative solutions provided that
either

B= gt—l and J m(x)dx =z 0
on 2
or

1
H=TmG)

Lemma 3.2. Suppose m(x) and b(x) are piecewise smooth and b(x) = by > 0. In
(3.5) we have
d—m(x)/b(x) aspu—0 ifm(x)>0 (36)
ii—0 asu—0 ifmx)<0 .

where the convergence is uniform on closed subsets of Q where m(x) and b(x) are
smooth and m(x) is strictly of one sign.
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If Bu = 0u/oy and [ m(x)dx > 0 then

j m(x)dx

fbd as pj— o 3.7

uniformly on Q.

Discussion. The first part of this lemma i.e. (3.6), is proved in [10] in this case
b =1, but the same methods work for general b > 0. Notice that the conver-
gence in (3.6) need not be uniform because of possible boundary layer effects.
However, the sort of convergence in (3.6) implies convergence in L?() for any
p 2 1 since by the maximum principle @ < sup (%) uniformly in u. The fact
that we do not generally have uniform convergence in (3.6) necessitates the
following technical lemma.

Lemma 3.3. Suppose that m(x)e C*(Q2) and there exists a positive equilibrium
i for (3.5). For p sufficiently large but finite the equilibrium i depends continu-
ously as an element of C* **(Q) on m(x) as an element of LP(Q);ie foranye >0
there exists a 6 > O such that if e LF(Q) with |m — 1|, < 8 then there is an
equlibrium i for

2
5% = pdu +m(x)u — b(x)u? in Qx (0, o)

Bu=0 on 8Q x (0,00

satisfying || — i c1++q) < &.

(3.8)

Proof. See Appendix.

Remark. In general, 4 will belong to the Sobolev space W 27(Q), and the
precise condition on p is that p be large enough that W 22(Q) < C1*%(Q). If
me LP(Q) then i is unique. (See [4].)

We now have the technical results needed for an analysis of (3.2).

3.2 Competition in heterogeneous environments when dispersal rates are
small or large

The first two results in this subsection deal with the case where both species
disperse slowly.

Proposition 3.4. Suppose that m;(x) is piecewise smooth and m;(x) > 0 on an
open subset of Q for i = 1,2 and that for either i=1 and j =2 or i =2 and
i=1

bij(m;)+
m; —b_-

JJ

(3.9)

on an open subset of Q. If py and p, are sufficiently small then o;> 0 for
= 1,2 and hence (3.2) is permanent and compressive by Theorems 2.1 and 2.2.
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Proof. See Appendix.
Remark. This result sharpens a result in [10] based on Lemma 3.1.

Proposition 3.5. Suppose that for either i =1 or i = 2 (3.9) holds but that for

jFi
[I?li - bulm) }
by 1+

m; — bj; 5 <0 onQ. (3.10)

If py and p, are sufficiently small then species i excludes species j, ie. if
u;(x,0) >0 thenu;—»0ast - ca

Proof. See Appendix.

3.3 Remarks and biological interpretation

In the case of constant coefficients, having the condition (3.9) hold for
i,j =1, 2 is exactly the standard condition for the coexistence in the classical
spatially uniform Lotka-Volterra competition model. Proposition 3.4 says
that if each species has some region where it can locally coexist with or exclude
the other, then for sufficiently low dispersal rates the population will coexist.
On the other hand, Proposition 3.5 implies exclusion of one species by the
other provided that (3.10) holds everywhere, so that one species always has an
advantage over the other. In the case of positive coefficients, (3.10) may be
rewritten as m;(1 + b”b") b"'"‘ < 0. This is stronger than simply the reverse
inequality in (3.9), which would be m; b"'”‘ < 0. How much stronger (3.10) is
than the reverse of (3.9) depends on the relative sizes of the coefficients
describing competition and self-limitation. It is not surprising that in the
diffusive case there is some gap between the condition for coexistence and that
for exclusion. The parameter dependence of the set of positive equilibria for
(3.2) can be quite complicated, and there are no simple necessary and sufficient
conditions for the existence of a positive equilibrium except in special cases.
(See [2,7, 8, 16-19, 24,26, 27, 31].) Another complication is that in the dif-
fusive case permanence (and compressivity) and exclusions are not the only
practical possibilities. Even in the spatially uniform situation there is the case
of contingent competition, where both states (i, 0) and (0, i, ) are locally stable
but there is an unstable coexistence equilibrium. In the spatially uniform
situation almost any small deviation from the coexistence equilibrium results
in the extinction of one or the other species, so the practical prediction is that
coexistence will not be observed. However, in the diffusive case there can be
situations where both (i1;, 0) and (0, &1, ) are locally stable but there also exist
stable equilibria with both species present. This can occur if the domain
Q consists of two large regions separated by a narrow corridor: the coexistence
equilibria then have one species dominant on one of the other large region.
(Results of this type are obtained in [31]; E. N. Dancer also has obtained
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Zzlsgctl resulftsi.l) The significance here is that although invasibility implieg
stence, fa i ibili ; j '
o excm:ifnc.)f mvasibility (6; < O for one or both of i = 1 and 2) does
‘ Thf:rej are a number of scenarios under which (3.9) can be satisfied
i=1,2,j =%= i so that coexistence is predicted. The standard one is the for
Xhere b‘-j.ls small for. i % j; i.e. competition is relatively weak. However j? p
also possible t‘hat b;;is large everywhere for i & J but that m; is large wh. o
1s small and vice-versa. Such a scenario could arise if the twé; populatio erehm2
growth rates that were strongly affected by some spatially variable uDS ‘ad
other than the availability of those resources for which the species C%I;tntlty
(Some factors of that type might be the presence or absence of refugees F o
predators or of some additional resource needed by one populatiorgl butrom
;[)he other.) In that case competition might be very strong but occur only rarI:I)t
t 1:(lac‘ause: the pppulatmns would segregate themselves for reasons not related t()),
' eir cqmpentlon. Another possibility might be competition (as measured b
h,-j) which is strong in some rf:gions and weak in others, or where each speciez
as an advantage (b; > b ;i) in some type of habitat.
In the case where the growth rates m; are positive throughout 2 we m

use tl?e notation of (3.1), so that m; = r;, b; = rifki, and by = a;;ri/k;. T at
notation (3.9) becomes ) ! anif To that

ki — o;;k; >0 on an open subset of Q (3.1
and (3.10) becomes
o oc,-jk‘- 0 e
; “*-(1 T aay) <0 onQ. . (3.12)

The next two results treat the case where one ies di i
bl:lt the other c.iispe:rses slowly. The only case where ?;figstlgltsiﬁzrifnrsgrﬁls{
glth—-very rapid dispersal (ie. g — o0) is when the boundary condition is

= ?u/@n and where j m;dx > 0; thus we shall always assume that th
conditions hold for the rapidly dispersing population >

We shall use the notation .

n—li == _‘- n1idX, Eii = j b,-,-dx, Bij = j bijdx- (3.13)

Proposition 3.6. S = _
subset of @ 1f uppose that m; > 0, By = 0u/dy, and my(x) > 0 on an open

- bi;(m))
¥ ; — [FASKSTE
7l ”}“—bj. ]dx >0 (3.14)
and
bj,'n-li
mi——=4—->0 (3.15)

on . ]
aiz) open subset of Q then for y; sufficiently large and u; sufficiently small
0:> 0 and o; > 0 so that the species coexist.
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Discussion. The proof is similar to that of Proposition 3.4. A sketch is given in
the Appendix. If (3.14) above holds then g; > 0 for y; sufficiently large and p;
sufficiently small; similarly (3.15) alone implies o; > 0 in that case.

Proposition 3.7. Suppose that (3.14) holds but

bj; [iﬁ,- - j <——-———bij(;nj)+ ) dx]
- = <0 on@Q (3.16)

m; =
by
Then u; excludes u; if u; is sufficiently large and p; sufficiently small. Suppose
that (3.15) holds but
7 b,
bij<mj— J—-'n

iy — J i >+ dx <0 (3.17)
bj;

Then for y; small and y; large, u; excludes u;.
Discussion. The proof is similar to that of Proposition 3.5. A sketch is given in
the Appendix.

3.4 Remarks and biological interpretation

As in the case where both populations have low dispersal rates, the conditions
(3.14) and (3.15) for invasibility and hence coexistence reduce to the standard
conditions for a spatially homogeneous Lotka—Volterra model (i.e. (3.11) in
the notation of (3.1)) provided the coefficients are all constant. The conditions
(3.16) and (3.17) for exclusion are analogous to (3.10) and in the case of
constant coefficients reduce (in the notation of (3.1)) to (3.12). However, (3.14)
and (3.17) are integral conditions and (3.16) involves integrated terms. This is
natural since one competitor is assumed to disperse quite rapidly. However,
the way in which coefficients are averaged in terms such as [ [bij(my)+/bj;] dx
(which occurs in (3.14) and (3.16)) is more complex than simply replacing each
coefficient with its (arithmetic) mean value. This can produce counterintuitive
results, some of which were observed in numerical experiments by Pacala and
Roughgarden [32]. We shall discuss this point in detail in the next subsection.
Another similarity with the case of low dispersal rates is that the condi-
tions for each competitor to persist may fail to hold locally on parts of Q but
the populations may still persist. In the case of the slow disperser the essential
point of condition (3.15) is that there must be some region where that
competitor has an advantage relative to a certain average of the competitive
strength of the rapid disperser. The mechanism is simply that the slow
dispersers tend to remain in the region where their population has an advant-
age and is thus able to recruit effectively. The rapid disperser can also persist
with only a local advantage if the advantage is sufficiently great, but the
mechanism is different. Condition (3.14) is an averaged condition, so that if
m; — (bij(m;)+/bj;) is sufficiently large in some places the condition may hold
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even though m; — (b;;(m;)./b;;) < O elsewhere. A scenario leading to (3.14)
might occur if the fast dispersers had a sufficiently great advantage in some
region and visited that region enough (because of their rapid dispersal) so that
the local advantage was still adequate for persistence after averaging over the
environment,

The last two results in this section treat the case where both populationg
disperse rapidly (g, and pu, large). In this case we must have B; = Ou/dn and
{mdx > 0fori=1,2for the species to be able to persist without competition
at arbitrarily high dispersal rates.

Proposition 3.8. Suppose that for i = 1,2, B; = du/fon. If

Ji

m; —

(where the bars denote integration over 2) then for y, and p, sufficientl y large
we have ¢; > 0.

Thus, if (3.18) holds for i = 1, 2, then (3.2) is permanent and compressive for
U1, U sufficiently large.

Discussion. This result follows from Lemmas 3.1 and 3.2 in the same way as
the part of Proposition 3.6 involving inequality (3.14), so the proof is omitted.

Proposition 3.9. Suppose that B; = Oufon for i = 1,2 and that (3.18) holds but
5, (n"z,- b ;)_,-mi>

"y — T <0. (3.19)

Ji

Then u; excludes u; if yu, and M2 are sufficiently large.

Discussion. The result is analogous to Proposition 3.5 and (3.7) and is proved
in the same way. The details of the proof are omitted.

Remarks. Again, the conditions for persistence reduce to the usual conditions
in the spatially uniform model provided the coefficients are constant. The
conditions for exclusion are also the same as those imposed in Propositions
3.5 and (3.7) provided that coefficients are constant. (These conditions
are shown in terms of the coefficients of (3.1) in (3.11) and (3.12).) As in the
previous cases, it turns out that a species can persist if it has a suitable
advantage somewhere. What is interesting in this case is that some of
the averages occurring in (3.18) and (3.19) are not simple averages over the
environment Q of biologically interpretable quantities such as carrying capac-
ities k; in (3.1) or competition coefficients a;;in (3.1)) but instead are averages
of combinations or functions of those quantities. This can have some signifi-
cant consequences, which we describe next.

We have seen that in general the conditions for invasibility (e.g. (3.9), (3.14),
(3.15), (3.18)) need only hold in some regions or in some average sense rather
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than throughout the entire environment €. This can(]i:lalx{/e so];me cg:;tgg;ﬁ;

i bserved by Pacala and Roughgar .

tive consequences, as was 0 d Roughgarden 132 0
i i use the results obtained in the p

numerical experiments. We can din the presont actic

i i ly verify some of those counterin :
to explain and rigorous ‘ cour A1) 1 ame
i written as a diffusive version .

The system treated in [32] was us rsion of (3.1 1n one
i i ith growth rates r; and competition co i .

D ioe capaci i jon. The boundary condi-

i ities k; = k;(x) depending on location. .
t carrying capacities k; = k;(x) .
?;ns weZe ogf Neumann type (i.e. no flux or closed environment). We consider

the analogous system

N i, 0o, o
owi _ ) - 1o — u; 1n s
7t ﬂ:A“z +7 [ ki(x) k,'(x) (320)
Bu__..___gl_ll-_-o OnaQX(O: CD)'

i+ a’,’

Recall that in the spatially homogeneous case the condition for coexistence is

ki
aij < E; . (3'21)

The counterintuitive observations of [32] can be paraphrased as follows:

Observation II. When p; is relatively large an_d ujis rejl.ati\_/ely spnall, it Ig)agvlsz
possible for species j to invade when species i is at equilibrium (i.e. o; >

though

oy > %% on Q (3.22)

Observation III. When y; is large, it may be impossible for species j to invade
with species i at equilibrium (g; < 0) even though

ki(x)
Ta(x)

1l that p, and p, represent dispersal r_a.tes.) .
(Re%il’e ﬁr:t tli::at Obszervation 1L The condition for o; > 0 for y; large and y;

small is given by (3.15). We have

i < on Q. (3.23)

Corollary 3.10. In the system (3.20), o; >0 if u; is sufficiently large, p; is
sufficiently small, and

< E,_(_x_) —}— dx on some open subset of 2. (3.24)
“=\er )k .

i i ifying m; = rj, by = rje/ki(x), my=ri,
Proof. This result follows from identifying m; b
arllfl {)-ﬁ = r;/k;(x) in (3.15), and then applying Proposition 3.6.
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Remarks. We could write (3.24) as
ki(x) k;i(x)

oy < =
jt 1 [ 1 (harmonic mean of k;(x))
<1/ {IQI Jiw dx})

on some subset of Q. (Recall that the harmonic mean of two positive numbers
A and B is

(3.25)

1 _ 24B
(1.1 ~A+B
2\A B
and that the harmonic mean is less than or equal to the arithmetic mean. For

a positive function f(x), the harmonic mean of f(x) = 1/((1/|]) | (1/f(x)))dx.
By the Schwartz inequality,

1
1212 = (] 1dx)? é(ff(x)dx)<ff@ dx)

harmonic mean {4, B} =

so that

i 1
[_I_J(L)dxil§|_§|§f(x)dx. (3.26)
QI J\f(x)

This is the integral version of the arithmetic-harmonic mean inequality.)

To examine the relationship between Corollary 3.10 and Observation IT of
[32] more closely let us assume that the terms k;(x), i = 1, 2 behave as in [32].
Specifically, suppose that for i =1,2 the function k;(x) equals a constant
k;; on a subdomain Q; = Q and another constant k;; on Q, = Q\Q,. (This
type of coefficient violates some of the smoothness hypotheses needed to
establish permanence via abstract methods; however, there is no major prob-
lem in handling coefficients with jump discontinuities from either the view-
point of eigenvalues or compressivity. See [4, 6, 9] for detailed treatments of
models with possibly discontinuous coefficients.) Let f = |Q,]/[2].

Corollary 3.11 Suppose that k,(x) and k,(x) have the form described above with
tarkiy > kot > da1kip > ki (3.27)

and B > 0 sufficiently small. If p, is sufficiently large and p, sufficiently small
then o, > 0 even though oy, > ky(x)/k,(x) on Q.

Proof. We need only to verify that (3.25) will be satisfied so that Corollary
3.10 applies with j = 2, i = 1. Computing the harmonic mean of k, yields
ky1kyo/(Bky2 + (1 — B)ky1) which approaches k;, as § — Q By (3.27) we have
021 < kay/ky, 50 that oy < kyy/(harmonic mean of k, ) for § small, and hence
is satisfied on ;.

Remarks. The first and last inequalities in (3.27) simply restate the hypotheses
that (k,(x)/k;(x)) < ay; of Observation II. The inequality (3.26) and the
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assumptions that u, is large and p, is small are precisely conditions (14) and
(15) of [32]. Tt turns out that to satisfy (3.25) with k; and k, as above we must
have k,, < ky; < ky;. The hypotheses that p, is small may sometimes be
refined or omitted, since what is really needed to imply o, > 0 is that either

1 .
Uy < —s——e O 1__0(211;1 dx>0.
l(l 0‘21”1) k,
1 —-=—
k

2

We have that if gy —» oo then u— harmonic mean of k,(x). If we write
h(ky) = harmonic mean of k; we have ¢, > 0 for all p, if

__“zlh(kl)
“:1 ) ]dx>0
1

Ha <
_ 0a1h(ky)
22,1 - 220

as well, or if

and y, is large enough that

0218y 1 — oy, h(ky)
Af1— 22| ——=——= ],
< kz(x)> = ( k()
We now turn to Observation II1 of [32]. The phenomenon suggested there
will occur under the hypotheses of the following proposition.

Proposition 3.12. Suppose that y; > 0 is fixed and that
vk;(x) kj(x)
ke~ S )

Sor some y < 1. If y is sufficiently close to 1 and y; is sufficiently large then
agj < 0.

n Q (3.28)

Proof. See Appendix.

Remarks. Proposition 3.12 shows that the phenomenon suggested in Obser-
vation III of [32] does in fact occur in reaction—diffusion models. In [32] it is
stated that the phenomenon requires both y; and p; to be large; however, an
analytic treatment in [32] of a simpler two-patch model based on ordinary
differential equations suggests that for a given value of y; the phenomenon will
not occur if y; is either too small or too large. (For a given value of y; the
phenomenon does seem to occur for y; sufficiently large. See [32, Fig. 6] and
the associated discussion.)

Biological interpretation. The implication of Proposition 3.12 is that even
though species j satisfies the condition for invasibility in a spatially uniform
environment at each point of a spatially heterogeneous environment,
invasibility may fail if the dispersal rate (measured by ;) is too large. The
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mechanism is that if the jth species has high dispersal rate it must satisfy an
invasibility condition which is averaged over the environment. If the ith
species disperses but not too rapidly, its dispersal from highly favorable to less
favorable regions can give it a spatially varying equilibrium so that the
averaged inasibility condition for the jth species fails. Note that the hypothesis
(3.28) requires y [max(%)] < min(%) so that y can be taken arbitrarily close to
1 only if k; = Jk; for some & > 0. This does not rule out the phenomenon of
Observation III in other cases, but suggests that for the phenomenon to occur
it might be necessary that the regions which are more favorable for the species
Jj are also more favorable for the species i. (Something of that sort was true in
those numerical simulations in [32] where Observation III occurred. The
scenario treated in [32] took k;(x) = k;; on &, for i, s = 1, 2 with the assump-
tion that ky; > 03,k ; > k3 > a5 ky,.) In [32] it is suggested that Observa-
tion III could be expected to hold when both y; and p; are large. This may not
be correct, because if both y; and p; are large and ot < kj(x)/ki(x) then
ajiki(x) < k;(x) so that a;; (harmonic mean of k;(x)) < (harmonic mean of k;(x))
which implies (3.18) (with i and j reversed) by the same type of calculation used
to dreive (3.25). When (3.18) holds with i and j reversed it follows that ;>0
for p; and p; large by Proposition 3.8. What seems to be needed for Observa-
tion ITI is that y; be large and y; neither be too large nor too small.

4 Spatial variation in the effectiveness of a predator’s response to prey
In this section, we consider a class of predator—prey models of the form

0
%‘ti = duy + uia — buy — c(x, uy))

in Q% (0, o)
6“2
i Auy + uy(—d + e(x) f(uy))
4.1)
5u1
— =0 on Q2 x (0, co)
on
Bu, =0 on 002 x (0, o0)
Such models are of the form (2.1), with f; (x, uy, u;) = a — bu; — ¢(x, u,) and
foalx, uy, u3) = — d + e(x) f(uy). Our primary interest here is in examining

how spatial variation in the effectiveness of a predator’s functional response to
prey affects the model’s predictions on the long term survivability of the
predator. To this end, we assume that the predator’s functional response to
the prey is given by e(x) f(u,), where f(u,) = 0 is nondecreasing for all u; 20
with f(u;) = 0 only when u; =0 and e(x) = 0 on @ with e(x)>d>0 on
a subset of Q of positive Lebesgue measure. The permanence results in [11] as
described in Sect. 2 strictly speaking require e and f to be twice continuously
differentiable functions, which is reasonable for f but potentially somewhat
limiting for e. For instance, the situation e(x) = e;, on £;, and e(x) = e, on
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€ — Q,, where e, = e, and Q, is a subset of Q, which reflects sharp changes in
the prey’s accessability to the predator, is not covered if e needs to be twice
continuously differentiable. However, we may relax the assumption on e sub-
stantially (say to e being bounded and measurable) and maintain the validity
of the results of Sect. 2. Since this issue is essentially only mathematical, we
shall not pursue it in this article. Instead, we refer the interested reader to [4]
and [97], where similar issues are addressed. The term c(x, u,) , reflecting the
effects of predation on the local per capita growth law for the prey, is
nonnegative, with c(x, u,) > 0 unless e(x) = 0 or u; = 0. The remaining coeffi-
cients y, 4, b and d, we take to be positive constants, so that we may focus
upon the effect of spatial variation in the predator’s functional response to the
prey on the longterm survival of the predator.

Since a and d are both positive, it is easy to observe that the conditions
for Step 1 and Step 2(b) are met for any u; > 0 and that i;(x) = a/b and ii,(x)

= 0. In this case, (2.4) becomes .

dwy + awy = ow; in Q

aWI -

‘W—O on@(),

so that w, is a positive constant on 2 and ¢ = a > 0. Consequently, (4.1) is
permanent provided that the value of o so that

Aw, + ( —d + e(x)f(%))vwz =ow, inQ

Bw, =0 on 9Q2

4.2)

admits a solution w, > 0 in @, is positive.

If —d+ e(x)f(a/b) <0 on 2, the maximum principle implies that the
relevant value of ¢ in (4.2) is negative. Consequently, we require that
—d + e(x) f(a/b) be positive on a subset of Q of positive measure. It can be
deduced from Sect. 2 that when B = d/dv (i.e. B represents a barrier) and
ol = d + e(x) f(a/b)) dx = 0, there is y > 0 on @ so that

Ay+<-—d+e(x)f(-g->)y=y2 in Q
4.3)

éX:O on 0Q.
on

If we multiply (4.2) by y and (4.3) by w,, integrate both equations and employ
the divergence theorem to integrate by parts, we obtain that

J wyyidx = o‘f woydx
a Q

which implies that o > 0 if w, > 0. We conclude that if B represents a barrier
and the average value of e (i.e. [ e(x)dx/|Q|) is larger than d/f (a/b), spatial
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variation in e plays no role in the longterm viability of the predator. In all the
other circumstances we consider, ¢ > 0 in (4.2} is equivalent to

/11< —d + e(x) f(%)) <1 (4.4)

where Ay(—d + e(x)f(a/b)) >0 is as in (2.7) with fi(x,0,0) replaced by
—d + e(x)f (a/b). (See [10], for example.) Hence, in all other circumstances we
consider, spatial variation in e can be expected to influence the longterm
viability of the predator in (4.1).
Let us now consider a particular example. Take Q = (0, 1), Bu, = u,, and
f(u) = uy/1 4 u; (a Holling Type 2 predator functional response to the prey).
Let ae[0,1/2], @, =(z, 1 — &), and define

my; on £,
eLx) =
m, on QA\Q,

where m, > m, > 0. Then
(—d+my)a—db

ay a+b
‘“e“(")f(B)‘ (—d+my)a—db
a+b

on Q,

n Q\Q,.

We now have in this example that (4.1) is permanent for a value of o € [0, 1/2]
precisely when 4; (m,) < 1, where m, = — d + e,(x)f (a/b). Let us suppose that

_d+ml(aib>>n2> ——d+m2(aib>>0.

When o = 0, the equation for A;(m,) reduces to
)w on (0, 1)

_w,,:l<(~—-d+m1)a—db
a+b

w=0 atOandat 1.
Hence

—d+my)a—db
g () _

which implies that 1,(m,) <1 and consequently (4.1) is permanent when
o =0. However, when «=1/2, an analogous argument shows that
Ai(my;3) > 1 and that (4.1) fails to be permanent when o = 1/2. Moroever, m,
is monotonically decreasing in « and thus 1,(m,) is monotonically increasing
in o. (See [4, Sect. 3], for example.) We may conclude that thereis o* € (0, 1/2)
so that (4.1) is permanent (and hence the predator is theoretically expected to
survive longterm) for o < o*, while permanence fails in (4.1) for o = a*.
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4.1 Biological interpretation

The example shows that if we think of the region upon which the predator has
better access to the prey as being a single subinterval (patch) centered around
the midpoint of the interval, then there is the critical length 1 — 2a* for this
subinterval so that permanence fails if the length of the better access patch is
no more than 1 — 20*. At the corresponding o value o*, 1i(m,.) = 1. Our
motivation for such a “mathematical experiment” comes from [6]. Proceeding
along the lines of Sect. 1 of [6], we can show for any « € [«*, 1/2), if we replace
e, with

- _jmy on(a+el—a+e

Cadlx) = {mz on [0, 0+ e]u[l —a +g 1]

where e €[ — o, 0)U(0, o], then A, ( — a + &, (x) f(a/b)) > 1 and (4.1) is not
permanent. We may conclude that if there is a single patch of territory where
the predator has better access to the prey, it must be longer than 1 — 20* for
there to be a chance for (4.1) to be permanent. If there is a single patch of
territory where the predator has better access to the prey and this patch is only
slightly larger than 1 — 2a™, its location in the interval becomes crucial. To see
that such is the case, let us consider €, ,+,, Which is given by

. 3o* 1 o*
7, On ) s D)

3o* o*
— ——, 11
m, on [0, 5 ]u[l 7 :I

3o 1 o*

éa*,a‘/Z(x) =

For n sufficiently large,

For such n, define

én(x) =

Notice that if &, is taken as e in (4.1), then the length of the subinterval of
better access to the prey is now 1 — 2o* + 2/n. If we were to center this sub-
interval about x = 1/2, the corresponding e is e, with a = o* — 1/n, so that
(4.1) would be permanent. On the other hand — d + &,(x) f(a/b) converges
to —d+ epop(x)f(a/b) in LP[0,1] for any pe[l, ). Consequently,
Ai(—d + &(x)f(a/b)) converges to A;( — d + ex p2p2(x) f(a/b)) > 1 as n - oo.
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(Again we refer the interested reader to [4, Sect. 3].) We may conclude that for
large enough n, A,( — d + &,(x)f (a/b)) > 1 while 1,( — d + e _1,,(%)f (a/b)) < 1,
so that shifting the location of the subinterval of better access to the prey
results in a loss of permanence. Thus spatial heterogeneity in the effectiveness
of a predator’s functional response to prey can have a profound impact upon
the predictions of the model.

Results similar to those just described hold for (4.1) in general. In that
which follows, assume 2 < IR" is a bounded domain with sufficiently smooth
boundary, and that e is a nonnegative, bounded and measurable function on
Q so that {x e Q: —d + e(x)f (a/b) > 0} has positive Lebesgue measure. If
B = 8/dn, assume additionally that {o( — d + e(x) f(a/b))dx <O0.

Let & = ess supge(x) and e = ess inf, e(x). We have the following result.

Theorem 4.1. Suppose there is a subdomain Qq of Q and e* € (e, €] so that
e(x) Z e* ae. on Qo and 14(Q) < —d + e*f(a/b), where 14(Q,) denotes the
unique positive value so that

—Az=1z inQ

4.5)
z=0 ondQ,

admits a positive solution. Then A,(—d + e{x) f(a/b)) <1 and (4.1} is
permanent.

Proof. See Appendix.

Interpretation. Biologically, Theorem 4.1 says that if there is a sufficiently
large amount of contiguous habitat sufficiently favorable to the predator, then
no matter how favorable or not the remainder of the habitat is to predation,
(4.1) will be permanent and long term survival of the predator can be expected.
To see that such is the case, observe from (4.5) that for a fixed set Q, and any
t>0, A,1(tQ0) = 1/t24,(Qq), where tQ, = {t¥: X € Q,} is an expansion (con-
traction) of Qq for t > 1 (t < 1). Moreover, the location of this contiguous
patch within Q does not matter.

Theorem 4.2. Suppose that Bu, = u,. Let C be a ball about the origin in R" with
|C| = |Q|. Suppose C, < C is a concentric ball and that for some e* € [ ¢, €) and

-—d—{—é'f(g) on Cy
my =

——d+e*f<g) on C\Cy ,

Ay(my) = 1, where Ay(m,,) denotes the unigue positive value so that
—Adz=7Amyz inC

z =0 on 0C
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admits a positive solution. Then if there is a subdomain Q, of Q with
[24] = |C\Cy| so that e(x) < e, a.e.onQy, A(—d + e(x)f(a/b)) = 1 and (4.1)
Jfails to be permanent.

Proof. See Appendix.

Interpretation. Theorem 4.2 implies that for a region with a lethal exterior, if
the predator’s efficiency is bounded above by é then there is a critical number
e* and domain size w (depending on é) so that if the region ©; where the
predator’s efficiency e(x) is no larger than e* has size [Q;| > w then (4.1) will
not be permanent no matter how Q, is arranged within ©. The loss of
permanence will in fact imply ultimate extinction for the predator so long as
the efficiency e(x) is less than the function

5o le on £,
e onQ\Q.

on a set of positive measure, for then, as in [4], 1,( —d + e(x) f(a/b)) > 1.
That such is the case follows since the prey density u; is a subsolution of the
diffusive logistic equation

0
6—1: = pydu +ula — bu) in Qx(0, o)

du _
v

so that for & >0, there is a t(¢) so that u; <(a/b) + & for t = t(e). Since
f(u;) is nondecreasing, for t=1t(e), u, is a subsolution for the lnear

problem
—Z—?:Au+<~—d+e(x)f<( )+£>>u in 2x(0, o0)

u=0 on Q2 x (0, o0) .

Now if Ay(—d+e(x)f(a/b))>1, then for &>0 sufficiently small,
A (—d + e(x)f((a/b) + €)) > 1, so all solutions of the linear problem must
approach 0 as t — co. Consequently u, must approach zero also. Our ap-
proach so far allows us to treat any suitable predator functional response to
the prey f(u,;). In general, predator functional responses are classified as
saturated or unsaturated, being saturated when lim, ., f(u,) is finite. Sup-
pose now that f(u;) is saturated and bounded above by M and that the
boundary of Q is lethal to the predator in (4.1). Then if —d + éM < 1,(Q),
where 4,(Q) is as in (4.5), we cannot expect permanence regardless of the
carrying capacity a/b of the prey, since if ¢ is an eigenfunction corresponding

0 on Q2 x (0, o),

Ia

<o
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Ml —d+emf(2))= LWW
e

[ o [ wer
f(—d-l—éM)qSZ S —d+eM J¢2

44(2)
= —d+eM

to A;( — d + e(x)f (a/b)),

I Q

S

[\

v

1.

This shows that if e(x) f(u;) < éM on Q, long term survival of the predator can
not be expected if |Q2] becomes too small. Suppose, on the other hand, that
lim,, o f(41) = + 0. Let Q; = Q be a subdomain of Q of arbitrary size
(possibly very small) so that e(x) >« a.e. on Q4 where o is an arbitrary
positive constant (again possibly very small). Then if a/b is sufficiently large,
A(—d + e(x)f(a/b)) < 1 and (4.1) is permanent. To see that such is the case,
let ¢, denote a positive eigenfunction corresponding to 1,(Q), where 4, () is

as in (4.5). Let
5 — ¢o on
°70  onQ\Q.

Choose a/b large enough so that — d + af (a/b) > A(Q2g). Then

21(—d + e(x) f(alb)) < j IV<$;!2/ (* d+el)f (Z- ))‘52
o JQo

=L 1\7¢o|2/ ; (-—d+e(x)f(§))¢%
gL IV¢O|2/ . (—d+af<§>)¢%

__ M@,

=

To summarize, the results of this section show that if the predator is
sufficiently efficient on a large enough contiguous section of the habitat, (4.1) is
permanent and the predator can be expected to persist regardless of the spatial
arrangement of the contiguous section. Likewise, the results show if the
predator is sufficiently inefficient on a large enough contiguous section of the
habitat, (4.1) fails to be permanent, whatever the spatial arrangement of the
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contiguous section. However, the results also indicate for the range of efficien-
cies in between these extremes, the spatial arrangement of the regions of
predator efficiency becomes crucial to a determination of permanence in (4.1).

5 Conclusions

In this section we shall describe some of the conclusions that can be drawn
from the mathematical analysis in this article. The description will be as
nonmathematical as possible, but some of the conclusions are about quantit-
ative issues (e.g. how parameters should be averaged over heterogeneous
environments) so we cannot avoid mathematical terminology entirely.

5.1 General conclusions

The broadest conclusion that we can draw is that in reaction—diffusion models
for two interacting species the idea that “invasibility implies coexistence” can
be formulated in a way that permits rigorous mathematical verification.
Furthermore, the appropriate definition of invasibility has built into it
a mathematical technique for synthesizing the effects of habitat size and
geometry, the behavior of populations at the boundary of the habitat, and
vital parameters such as population growth rates, dispersal rates, and carrying
capacities. That technique can be applied even in cases where spatial hetero-
geneity causes vital parameters to vary with location. (It turns out that the
same mathematical approach can be used to address similar issues in more
general or different sorts of models including reaction—diffusion models with
time periodicity and difference or differential/ difference equation models
where time, space, or both are assumed to be discrete. Some of these sorts of
models are discussed in [21,22].)

The formulation of coexistence used in our analysis is the existence of an
attracting set of population densities wherein the density of each population is
bounded above and below by some fixed (but perhaps spatially varying)
density. By an attracting set we mean a set which the densities corresponding
to any positive initial data must eventually approach or enter. Such a set could
be a single stable equilibrium, a stable periodic steady state, or something
more complicated. In the case of a system describing two competitors the
attracting set (if it exists) will be bounded by two equilibria. At one equilib-
rium the first competitor will have an equilibrium density which is the
maximum positive equilibrium density in the presence of the second competi-
tor; at the same equilibrium the second competitor will have its minimum
positive density. At the other equilibrium bounding the attracting set the roles
of the two competitors will be reversed. However, these equilibria need not be
the same and we are not generally able to rule out the possible existence of
other equilibria or more complicated steady states. In the case of predator—
prey systems or systems with three or more competitors it is not generally
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possible to bound the attracting set in terms of equilibria, although it is
sometimes possible to make estimates of the lower bounds on densities in the
attracting set. In some cases the existence of a unique globally attracting
equilibrium can be demonstrated, but that usually requires additional and
stringent hypotheses. These points are addressed in [7-12, 15, 16, 21, 22,
24, 27].

The formulation we use for invasibility is the instability of those equilibria
where at most one of the interacting species is present. (If we were to consider
systems with N species, we would need to examine the stability of equilibria,
steady states, or other attracting sets for subsystems with N — 1 or fewer
species present.) By instability of an equilibrium we mean the property that
the linearized model predicts the growth of the populations of at least some of
the species not represented at that equilibrium if those new species are
introduced at low densities while the remaining species are at the equilibrium.
This captures the idea of invasibility because it means that a species can
increase in numbers if introduced into a system where the other species are
already established. For reaction—diffusion models, instability can be charac-
terized by the sign of the principal eigenvalue of a partial differential operator
of elliptic type. Such eigenvalues will generally depend on the size and shape of
the spatial region containing the environment, the behavior of the populations
at the boundary of the environment, and the various parameters describing
growth, dispersal, carrying capacity, and other vital rates for the populations
in the model. The study of eigenvalues for such purposes was initiated by
Kierstead and Slobodikin [237 and Skellam [35] in their work on the models
now commonly designated by the acronym KISS of their names. The estima-
tion and interpretation of eigenvalues is a major part of the mathematical
analysis of this article. Other results on this topic and applications of eigen-
value estimates to various questions involving spatial effects are given in
[3-7,9, 10, 14-16, 21, 33]. The same sort of analysis could also be applied in
models based an ordinary differential equations or discrete models. In those
cases the eigenvalues would be eigenvalues of matrices. Matrix eigenvalues
have been widely studied in the context of Leslie matrices where the parameters
describe the life history of the organism. Our approach is similar, except that
our parameters typically describe spatial and density dependent effects.

5.2 Conclusions on predator-prey systems

The main question we address for predator—prey systems is that of determin-
ing when the arrangement and location (as opposed to the size and quality) of
prey refuges and regions favorable to the predator determines the invasibility
of the system by the predator when the prey is already present. The qualitative
conclusion is not surprising. If the region favorable to the predator contains
a sufficiently large and sufficiently favorable subregion then the predator can
invade no matter how the favorable regions and prey refuges are arranged in
the remainder of the environment. On the other hand, if the favorable region is
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too small and not sufficiently favorable relative to the effectiveness of the
refuges, the predator cannot invade the system no matter how the favorable
regions and prey refuges are arranged. For cases where the regions favoring
predation are of intermediate size and favorability, their arrangement relative
to the prey refuges will determine whether or not the predator can invade the
system. What is new in our analysis is that we show how the ideas of
“sufficiently large and favorable” and “too small and not sufficiently favor-
able” can be quantified. Roughly, we assume that the prey is at its carrying
capacity, substitute that value into the predator equation, and analyze the
behavior of the principal eigenvalue for the resulting linear (or more generally
linearized) equation. The local dynamics for the predator population in our
models are described by the starvation rate of the predators in the absence of
prey, the mass action law or functional response describing the effects of prey
density on the rate of predation, and a spatially varying factor multiplying the
functional response which describes the efficiency of the predator in convert-
ing the prey it captures into new predators. This efficiency term reflects the
amount of effort required by the predator to capture prey. The local dynamics
are combined with a diffusion term describing the dispersal rate of the
predator. To evaluate the model it would be necessary to measure four
different parameters: the starvation rate of the predator; the rate at which prey
are consumed by a predator when the prey population is at its carrying
capacity and conditions are optimal for predation; the percentage of the
optimal prey consumption rate that it is feasible for a predator to attain at
each location in the environment; and the dispersal rate of the predator in
terms of average distance travelled in unit time. Even if those quantities are
known the mathematical or numerical analysis of the model in a given case
would still require substantial effort and expertise, but such an analysis is well
within the range of standard methods. Thus in principle our models could be
used to treat real situations. A limitation of the work in this paper is that we
consider a fairly simple class of models. In some cases additional factors might
come into play or the character of density dependent effects might be more
complicated. The analytic approaches we have taken could probably be
applied to some more complex models but not to others.

The focus of our analysis of the effects of prey refuges and regions favoring
predation is somewhat different than in other studies. We do not consider how
spatial variation affects the size or stability of equilibria where neither popula-
tion density is low. This is in contrast with the analysis in [30,34]. Since we
address a different set of questions, our results neither support nor refute the
conclusions of other studies about the effects of prey refuges on the stability of
positive equilibria in predator-prey systems.

5.3 Conclusions about competition models

The competition models we consider are all diffusive Lotka—Volterra models,
usually with spatially varying coefficients. All of our conclusions can be
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interpreted as describing how the spatially varying terms should be combined
and averaged over the spatial extent of the habitat to yield global predictions
about invasibility and hence persistence. We explore the specific implications
of the averaging procedures in a number of cases. In many of the cases we treat
explicitly we assume that the dispersal rate of at least one of the competitors is
either very large or very small. Some of the special cases we consider were
studied via numerical simulations in [32]. Our results provide rigorous
mathematical verifications and explanations of some of the observations
of [32].

The quantities that would require measurement in any specific application
of our results are the local values of the coefficients in a Lotka-Volterra
competition model and the dispersal rates (in terms of average distance
travelled per unit time) of the competitors. The Lotka-Volterra coefficients
represent or depend on intrinsic population growth rates, carrying capacities,
and strength of competition. The parameters describing strength of competi-
tion could be viewed as describing the extent of niche overlap for the com-
petitors. Derivations of Lotka—Volterra coefficients in terms of resource
consumption are given in [28,36]. Interference competition is treated in [13].

The general conclusion of our results is that spatial heterogeneity and
diffusive dispersal can induce mutual invasibility and hence coexistence in
situations where the local prediction of the model at many (or all) locations is
that invasion by one or both species would fail. The reverse is also possible;
that is, a situation where invasibility would be predicted locally may become
noninvasible because of the interaction of dispersal and spatial heterogeneity.
Such conclusions were drawn in [32] but only for a relatively restricted class
of models, and in some cases their conclusions are based only on numerical
experiments. Our results are quite general, but to evaluate then we need to
know the equilibrium distribution for each competitor in the absence of the
other. That equilibrium is always determined by a diffusive logistic equation
but can be computed easily and directly only in the asymptotic limit as the
diffusion rate becomes very small, or in the case of closed environments very
small or very large.

In the case of a small diffusion rate the equilibrium for a spatially varying
diffusive logistic equation approximately tracks the carrying capacity where
the intrinsic local growth rate is positive and is approximately zero where the
local intrinsic growth rate is negative. If the diffusion rates of both competitors
are small the spatial variation may cause them to segregate. That can allow
coexistence even if competition is uniformly severe because the spatial segre-
gation provides each species with the what amounts to a refuge from its
competitor. If the intrinsic local growth rates and carrying capacities are
constant then the arithmetic means of the coefficients describing the strength
of competition play a crucial role in determining invasibility and hence
coexistence. Thus, competition may be very severe in some regions and still
permit coexistence if the total area of those regions is small. Other more
complicated interactions of spatially varying factors could also mediate
coexistence.
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If the boundary of the environment acts as a barrier and the intrinsic local
growth rate is a positive constant, the equilibrium density for a diffusive
logistic equation is approximately equal to the harmonic mean of the carrying
capacity when the diffusion rate is large. In determining invasibility each
competitor interacts with the logistic equilibrium of the other. It follows that if
the first competitor has a large diffusion rate then it is the average carrying
capacity for the first competitor in the sense of the harmonic mean rather than
the local carrying capacity that influences invasibility by the second competi-
tor. If the second competitor has a sufficiently low diffusion rate and there are
regions where the local conditions favor the second competitor relative to the
average carrying capacity of the first competitor, then the second competitor
may be able to invade by increasing its density in those regions. (The low
diffusion rate for the second competitor is needed to prevent dispersal out of
the favorable regions.) Paradoxically, in the regions favoring the second
competitor it may be that the carrying capacity for the first competitor is also
high, even high enough that the local population dynamics would predict that
the second competitor could not invade. However, it is the harmonic mean of
the carrying capacity of the first competitor rather than the local value which
is relevant in this scenario, so the system may be invasible by the second
competitor in spite of an apparent local advantage for the first competitor at
every specific location.

In the case where both competitors have large diffusion rates and the
intensity of competition is spatially homogeneous, the condition for invasibil-
ity by the second competitor involves the ratio of the harmonic means of the
carrying capacities of the competitors.

We can give explicit conditions for invasibility in cases where diffusion
rates are either quite large or quite small. It is likely that the explicit condi-
tions have many possible interpretations in various scenarios since they
depend on the interactions of several parameters. We hope that those readers
whose primary interest is in ecology will examine and perhaps suggest inter-
pretations for some of those conditions. The derivations of the conditions are
somewhat technical but are not necessary for their interpretation.

Appendix

Proof of Lemma 3.3. Suppose the p is large enough that W >?(Q) embeds in
C'*%(Q). Let X = {ue W >?(Q): Bu = 0 on Q}. Define F: L?(Q2) x X — L?(Q)
by F(q, u) = udu + (g — bu)u. Note that F(m, 1) = 0 and that F is well defined
and continuous since X = C!**(Q). Furthermore, we can compute the differ-
ence quotient

_ {F(q + er,u + ew) — F(g,u) — e[ pdw + (q — 2bw)w + ru]}
€

0(e)

= g(r — bw)w ,
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so that Q(g) — 0 in L?(Q) as ¢ — 0, and F is thus differentiable with

DF(q, u)[r, w] = pudw + (g — 2bu)w + ru .
Also,

IDF(g, u)[r, wlllp < pllwlz,p + Cllg — 2ull, 1wz, + Clirlpllull2,, »

so that DF(q, u): L¥(2) x X — L?(£)is a bounded operator. (We have used the
fact that p is large enough that for some constant C, supy|v| < ||v e <
Ci v}, ;) Similarly,

I(DF(qy,u1) — DF(qz, u2)) [r, w1,
= (g1 — g2 — 2buy + 2buy)w + (uy — uy)r |,
= Cilllgr = g2l + 2116w — u2)llp I wllz,p + Cilluy — uzllzp 171,
= Ci(llgy = gallp + (L + 2supb)lus — uzll2,,) (7 1, + Iwll,)

so that in the operator norm on ZL((L?xX,LP) we have
IDF(q2, u2) — DF(gy, uy)|| < C1((1 +2supb) (g1 — g2, + Iy — 215, )
and thus DF(q, u) is continuous. It follows that we may apply the implicit
function theorem to the relation F(q, u) = 0 at the point (m, @) provided that
the derivative with respect to wu, D,F(m, i), is invertible. Now,
DF, (m,d)[w] = udw + (m — 2ba)w. Since we have pdii + (m— bi)ii=0
with @ > 0, it follows that the principal eigenvalue of

pdy 4+ (m— b)Yy =y in Q,

Bu =0 on 082

is equal to zero. Standard eigenvalue comparison theory implies that the
principal eigenvalue of

pdy +(m —2bi) = oy in Q,

Bu=0 onoQ
is negative, and then standard elliptic theory implies that [ud + (m +
2ba)]~ ! LP(Q) — X exists as a bounded operator. This uses the assumption
that me C*(Q).) It follows from the implicit function theorem that in some

neighborhood f(m, 1) in L? x X the relation F (i, i) = 0 defines & = i(iii)e X
as i —m in LP(Q).

Proof of Proposition 3.4. The proof is based on Lemma 3.2 and the observa-
tion that if m(x) > 0 on an open set then the principal eigenvalue o of

pAY +m(x) = o in Q

Bu=0 on 6§
satisfies

if
g >0 ifd,(m(x)) >0 and u <ll(m)
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or for any £ >0

0
©>0 ifj m(x)dx >0 and Bu=-2.
e an
(If
ou
Bu=— and m(x)dx < 0
on 0
then

Ay (m) > 0; ﬂj m(x)dx =0
Q

then oy = 0.) This point is discussed in [5,32]. If Bu = du/dn, assume for the
moment that

J [Wﬁ_ﬂ“]dx#o fori=1,2andj+i.
Q by

(The case where one of these integrals is zero requires a slightly different
treatment and will be discussed at the end of this proof.) By (3.9) we have
my(x) > 0 on an open set for i = 1, 2 so that #; and i, exist at least for u,, i,
sufficiently small. Suppose that for

;= ba(m;

i=1,2 and j+i Al<w>>0.

bj;
By Lemma 3.2,

i;— () in L#(Q)

by
for any p < co. However, 4, (m(x)) depends continously on m relative to L?(£2)
for p sufficiently large. (This follows from the variational formulation of the
eigenvalue problem and the fact that W - embeds in L? for some g > 2. See
[4] and the references theirin for further discussion.) Thus, there exists

a p¥ such that if y; < u¥ then

b,i(m;
0 < Ay (m; — byit) < 244 (mi - 1(m1)+).
bj;
If
1

m<
224 ("’li ~ byl >
bj;

then a; > 0.

Thus, if
1

M <
224 (ﬂli - ——bug)mj)+

Ji

) and g;<p¥ theno;>0.
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1

i < min{ pf,
211(,,% ,b_O_"Z_>
b;;

fori=1,2,j%1i

theno; >0fori=1,2.
~ Suppose that Bju = du/dy and that

f mi~—w dx>0.
a bj;

ﬁj—>—————(":)+ in LP(Q2) as ;- 0,

Ji

Since

there exists u¥ such that if p; < p} then [, (m; — byii;)dx >0, so that for
K < pu¥ we have g; > 0. Finally, if

3 ms
Bu = & and J l:m,- — M)i] dx =0,
on 2 bji

choose 6 > 0 such that
__ bij(m;)+

i b

J.

—-0>0

on an open set. Note that

J <mi—w~—5)dx= — 6|2l <0
o b

i

2,1<7ni—“lz'i(r—n‘j—)i—6>>0.

so that

b;;

As before, there exists u¥ such that for p; < p¥ we have

0 < Ay(m; — byit; — 8) < 244 <mi _ bij(l;7lj)+ _ 5)

JJ

1
<
2/11<mi -éi(£—n—1)—+ — 5)

JJ

then ¢f > 0 where of is the principal eigenvalue of
[J,Alp + [771,‘ — bijﬁj - 5](// = O'l// in Q
By =0 ondQ.
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However, 6f = ¢ — § so for y; < uf and

1
M <
STy
bj;

we have ¢ > 0. The case of ¢; is symmetric.

Proof of Proposition 3.5. The proof consists of showing that the hypotheses of
Proposition 3.5 imply those of Lemma 2.3. We must show that the state with
u; =0 and u; = il; is unstable and that there is no equilibrium with both
components positive. The instability of the state with u;=0 and u; =u;
follows from (3.9) wherever y; and y; are sufficiently small, so we need only
show the nonexistence of a positive equilibrium in (3.2).

Suppose that (uf, u3) is an equilibrium of (3.2) with both components
positive. Clearly u? is a subsolution of

du .
E:ujAu+(mj—bjjuj)uj in Q

(A.1)
Bu=0 on 082.

Since (A.1) has #; as its unique equilibrium and admits any sufficiently large
constant as a supersolution, it follows that u} < #;. Thus, uf is a supersolu-
tion to

0
’E;tf = wdu + (m; — byjit; — byw)u  in Q

(A.2)
Bu=20 on 0Q2.

By (3.9) we have o; > 0 for g; and y; sufficiently small where o; is the principal
eigenvalue of
wAY + (m; — by;i;)P =¥ inQ

B;¥ =0 on 0Q.

If ¥, > 0 is the eigenfunction with o;, then y¥; is a subsolution of (A.2) for
y > 0 sufficiently small. Thus (A.2) has a unique positive equilibrium y; < uf.
Finally, u¥ must then be a subsolution of

ou

i widu + (m; — byu; — bju)u in Q

(A.3)
Bu=20 on 0Q.

As p;—0 we have i;— (m;)+/bj; in LP(Q) for all p by Lemma 3.2. Thus
u;—uf* in C'**(Q) as p; >0 by Lemma 3.3, where uf* is the positive
equilibrium of

%—ngyiAu—l—(mi—@%ﬁ)i-—bﬁu)u in @
i (A4)
Bu=0 on 9Q.
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(The existence of uf* for u; small is guaranteed by Lemma 2.6 since (3.9)
implies that m; — (b;;(m;)./b;;) > 0 on a set of positive measure.) Hence for
any &> 0 there is fi; >0 such that ||i; — u¥*| o=@y <& for u; < ;. By
Lemma 3.2,

[m,- - .bii(l;"j)+]
J_ AT in LP(Q)as ;- 0.

uf* -

by;
Since b is bounded the principal eigenvalue ¢§ of
wd¥ + [m; — buf* 1V =¥ inQ
B;¥# =0 ondQ

depends continously on uf* relative to LP(Q) for large p. (This follows from
the variational formulation of the eigenvalue problem and the embeding of
W t-Zinto L? for some g > 2.) Thus for any & > 0 there exists u¥ > 0 so that if
wi < p¥ then oF < oF* + ¢, where oF* is the principal eigenvalue of

ij_'bji':mi—‘%ibq] Y=6c¥ inQ
#jAg’+{ el

b B;¥ =0 ondQ

By (3.10) 6¥* < 0. Returning to (A.3), let 6; denote the principal eigenvalue to
B;¥ =0 onodQ.

We have w; = uf* —¢, so if y; < ji; then 6; < ¢F + esup by; by standard
eigenvalue comparison results. For yu; < uf we have of Sof*+¢& so
6; < 6F* + & + e sup by. It follows that for & > 0 sufficiently small, 6; < 0 so
by the remarks following Lemma 2.6 all positive solutions of {A.3) must
approach zero as t — oo. Since u¥ is a subsolution to (A.3), we must have
uf —»0ast— oo, contradicting the assumption that u¥ > 0in Q. Thus, under
hypothesis (3.10) there can be no positive equilibrium for (3.2), and it now
follows from (3.9) and (3.10) that all positive solutions of (3.2) must approach
(#,0) as t — oo provided p,; and p, are sufficiently small.

Proof of Proposition 3.6 (Sketch). The proof that ¢; > 0 for y; small and y;
large if (3.15) holds is essentially the same as that of Proposition 3.4, except
that the fact that

lﬁ;

uiaz—; as p; — o0
is used in place of the fact that

o (m) s

u;— b as U; — 0.
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To see that (3.14) implies o; > 0 for y; large and p; small we simply take the
limit of the integral in (3.4) as p; — co. (The convergence in (3.6) and (3.7) can
be taken in LP(Q) for any p < 0.) Since #; — m;/b;;, which is a constant the
result is that as y; — oo and p;— 0, )

J\(biiﬁi - bijﬁj)ﬁiz dx — (%> J[h:(%) o ﬁ%ﬂi:l dx
_ ([ (1 bijlm,)
- <B:i> [<5ii> Jbiidx B J(T)d"]
(Vo (o]

Thus, (3.14) implies that (3.4) holds for y; large and p; small, so ¢; > 0.

Proof of Proposition 3.7 (sketch). The idea is the same as in the proof of
Proposition 3.5, wth only the limiting behavior of the various equilibria
changing. Suppose (3.14), and (3.16) hold; then o; > 0 for y; large and y; small.
As in the proof of Proposition 3.5, an equilibrium (u§, u%) satisfies u} < #; and
u¥ 2 u; where ii; and y; are the equilibria of (A.1) and (A.2) respectively, and it
follows that u¥ is a subsolution of (A.3). Since

z (my)+

Ji

as u;—0

and
Y= j (m; — bijaj) - (m; —J bijﬁj)
= f by by;

as pf; — oo,
it follows that for y; small and p; large the principal eigenvalue 6; of (A.5) is
negative provided (3.16) holds.

Suppose (3.15) and (3.17) hold. The argument is essentially the same,
except for the observation that the principal eigenvalue for

bijﬁj]q,:a?’ in Q
on 09

wAY + [m; —
BY¥Y =90

(with B;¥ =0¥/dy) is negative for p; > (1/A,(m; — bju;)) provided
f (m; — by; u;)dx < 0. (Here u; replaces u; in the proof of Proposition 3.5).
Thus, we do not need a pointwise condition to show that there can be no
equilibrium (u¥, u%) positive for large y;. In this case

. ;n._.b..a. +
#; —= and u~——>———-——( i — byth) as p;j—0
by =J b J
ii 1]

so a condtion implying | (m; — b;ju;)dx < 0 for y; large and y; small is given

by (3.17).
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Proof of Proposition 3.12. By Lemma 2.6 we have g; < 0 if
1

Hi = Ols:ls
afofr-51])
o5 th;
f(l K )dx <0.

provided that

Recall that
LA + r,»(l —-@)ai =0
k;
so that
J <1 —&>dx = -4 @dx.
Q k; Fi Jo U;
However

A%y Y, VAP

U; u; ui2

so that since di,/dn = 0 on 82 we have

—.. . —. _. 2
f (1 ~ﬁ>dx= M [(V-(Yz’ﬂ))+lvu;l ]dx
Q k; FiJa U; Ui

K 1 oi; w {1V
= (ﬁi a}1>ds 5—dx

r; Jao FiJo Ui

[ |ViE |2
—&f VAL e <0
ryJo U

By (3.27) we have

L0-2)<J0-%)e
-_~‘(1 -iel +7f(1 —%> >

<0

for y sufficiently close to 1. It follows from Lemma 2.6 that if ; is sufficiently
large then ¢; < 0.

FProof of Theorem 4.1. 1t follows from [29] and [3] that
falVAH|?

,11< —d+ e(x)f<-§>> < L ( oy (g»hz

e
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for all heWg?(Q) (heW™*(Q) if B=0/3n) so that [o(—d+e(x)
f(a/b))h? > 0. Let ¢ > 0 on Q, be an eigenfunction for (4.5). Define

d(x) xefq

o R

>0 on Qp ae., fo —d + e(x)f(a/b))$* > 0. Hence
))#
[ Ve[

e = { 0 xef\Q.
Then deW§3(Q) and since —d + e(x)f(a/b) = — d + e* f(a/b) > 41(Qo)
/h(- 4+ e(x) f<%>) < [V
J ( —d+ e(x)f(
NETTan
[ 1vor = —pap=n@0) | o

Since ¢ satisfies (4.5),

so that
41(Q0) [a, ¢?

Al( —d+ e(x)f(f)) <
T cavens(]))e

A1(Q0) fo, ¢*

(everE)for

<1.

A

Proof of Theorem 4.2. Let ¢ > 0 satisfy

-—A¢=/11(-—d+e(x)f<-g>)<~d+e(x)f<g)>¢ in Q

¢=0 on 09
Then

[alVgI?

,11( a4 E(x)f(g>> = i ( . f<%>) p
oo (oo

g }'l('n[),) 3
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where

Mg =

—d+ e‘f<-g> on O\,

and A(mg,) is the unique positive value so that

— Az =2Ampz in Q

z=0 on oQ2

admits a positive solution. (Note that the preceding made use of the fact that
Jama, ¢ 2 [a(—d + e(x)f(a/b)) $* > 0.) By the proof of [4, Theorem 3.9],
we can construct a rearrangement m,_given by

* —d-l-e*f(%) on £,

Mg, ==

2

—d+ é‘f(%) on Q\Q,

so tht |Q,] = [Q,], A(mg,) = A,(my,) and the eigenfunction corresponding to
A1(mg,) has 0Q, as a level set. It then follows by symmetrization as discussed
in [1] that 4;(mgq,) = 1,(m,) as in [4, Remark 3.10].
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